Users Online: 506 | Home Print this page Email this page
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
Year : 2018  |  Volume : 8  |  Issue : 2  |  Page : 83-91

Development and investigation of novel solid self-nanoemulsifying system loaded with hydrochlorothiazide for the treatment of hypertension

1 Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, India
2 Department of Pharmaceutics, Shree Devi College of Pharmacy, Mangalore, Karnataka, India
3 Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt

Correspondence Address:
Dr. Akhilesh Dubey
Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore - 575 018, Karnataka
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jphi.JPHI_29_18

Rights and Permissions

Objective: The present study was aimed at formulating and evaluating a novel solid self-nano emulsifying drug delivery system (SNEDDS) to increase the solubility and bioavailability of hydrochlorothiazide (HCZ). Enhancing both solubility and bioavailability of drugs remain the cornerstone for achieving successful outcomes of delivery systems. Furthermore, employing nanotechnology-based formulations such as SNEDDS offers important advantage; the most important is the protection of the drug from enzymatic or chemical degradation. Materials and Methods: Liquid SNEDDS (L-SNEDDS) was prepared by adding a drug to oil, surfactant, and co-surfactant and heated up to at 60°C under continuous stirring. Solid SNEDDS (S-SNEDDS) was prepared by mixing L-SNEDDS with microcrystalline cellulose in 1:1 proportion. Results: The scanning electron microscopy showed that S-SNEDDS was spherical with an average particle size of 66.9 nm and 69.2 nm for both L-SNEDDS and S-SNEDDS, respectively. Ex vivo skin permeation study indicated that 100% drug was released from both the L-SNEDDS and S-SNEDDS formulation SF3 in 3 h. Analysis of variance test showed significant differences (Moderately significant P < 0.01) in the values when compared to a marketed product. Conclusion: The prepared S-SNEDDS helped in improving the solubility of the poorly soluble HCZ, which is a step forward toward bioavailability enhancement and thus increased therapeutic efficacy of the drug.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded115    
    Comments [Add]    

Recommend this journal