Users Online: 93 | Home Print this page Email this page
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
REVIEW ARTICLE
Year : 2017  |  Volume : 7  |  Issue : 1  |  Page : 4-9

Spherical crystallization: A technique use to reform solubility and flow property of active pharmaceutical ingredients


1 Department of Pharmaceutics, School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, India
2 Department of Pharmaceutics, School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, India; Department of Pharmaceutics, Laboratory of Pharmaceutical Formulation Design and Development, School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago, West Indies

Correspondence Address:
Madan Mohan Gupta
Department of Pharmaceutics, School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, India; Department of Pharmaceutics, Laboratory of Pharmaceutical Formulation Design and Development, School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago, West Indies

Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jphi.JPHI_36_16

Rights and Permissions

Tablets have been choice of manufacturers over the years due to their comparatively low cost of manufacturing, packaging, shipping, and ease of administration; also have better stability and can be considered virtually tamper proof. A major challenge in formulation development of the tablets extends from lower solubility of the active agent to the elaborated manufacturing procedures for obtaining a compressible granular material. Moreover, the validation and documentation increases, as the numbers of steps increases for an industrially acceptable granulation process. Spherical crystallization (SC) is a promising technique, which encompass the crystallization, agglomeration, and spheronization phenomenon in a single step. Initially, two methods, spherical agglomeration, and emulsion solvent diffusion, were suggested to get a desired result. Later on, the introduction of modified methods such as crystallo-co-agglomeration, ammonia diffusion system, and neutralization techniques overcame the limitations of the older techniques. Under controlled conditions such as solvent composition, mixing rate and temperature, spherical dense agglomerates cluster from particles. Application of the SC technique includes production of compacted spherical particles of drug having improved uniformity in shape and size of particles, good bulk density, better flow properties as well as better solubility so SC when used on commercial scale will bring down the production costs of pharmaceutical tablet and will increase revenue for the pharmaceutical industries in the competitive market. This review summarizes the technologies available for SC and also suggests the parameters for evaluation of a viable product.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed361    
    Printed4    
    Emailed0    
    PDF Downloaded66    
    Comments [Add]    

Recommend this journal