Users Online: 384 | Home Print this page Email this page
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL RESEARCH ARTICLE
Year : 2011  |  Volume : 1  |  Issue : 4  |  Page : 214-221

Development of lyophilization cycle and effect of excipients on the stability of catalase during lyophilization


1 Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
2 Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India

Correspondence Address:
Arvind K Bansal
Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar, Punjab -160062
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2230-973X.93007

Rights and Permissions

Introduction: The purpose of the present study was to screen excipients such as amino acids and non-aqueous solvents for their stabilizing effect on catalase, a model protein, for lyophilization. The present study also includes optimization of lyophilization cycle for catalase formulations, which is essential from the commercial point of view, since lyophilization is an extremely costly process. Materials and Methods: Activity of catalase was determined using catalase activity assay. Differential scanning calorimetry was used to determine eutectic melting temperature of the frozen catalase solution, which is essential for the optimization of lyophilization cycle. Results: When catalase was lyophilized without excipients, it was found that about 65-78% of the initial activity of catalase was lost during the lyophilization process in a concentration dependent manner. The maximum stability of catalase during lyophilization was observed at pH 7.0. Amino acids like alanine, glycine, lysine, serine and 4-hydroxy proline showed strong stabilizing effect on catalase during lyophilization by protecting catalase activity above 95%, whereas valine and cysteine hydrochloride showed destabilizing effect on catalase. Non-aqueous solvents such as dimethyl formamide, dimethyl sulphoxide, polyethylene glycol (PEG) 200, PEG 400, PEG 600 and ethylene glycol also showed destabilizing effect on catalase during lyophilization. Conclusions: In order to prevent loss of catalase activity during lyophilization of catalase, use of amino acids like alanine, glycine, lysine, serine and 4-hydroxy proline in optimum concentration is highly advisable.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed7490    
    Printed191    
    Emailed3    
    PDF Downloaded934    
    Comments [Add]    
    Cited by others 6    

Recommend this journal