Users Online: 9 | Home Print this page Email this page
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 

 Table of Contents  
ORIGINAL RESEARCH ARTICLE
Year : 2011  |  Volume : 1  |  Issue : 1  |  Page : 29-34

Dissolution enhancement of efavirenz by solid dispersion and PEGylation techniques


1 Department of Pharmacy, Faculty of Technology, Osmania University, Hyderabad, India
2 Department of Pharmaceutics, Nalanda College of Pharmacy, Nalgonda, India
3 Dr. Reddy's Labs, Bachupally, R.R. District, India

Date of Submission07-Aug-2010
Date of Decision01-Nov-2010
Date of Acceptance01-Nov-2010
Date of Web Publication16-Feb-2011

Correspondence Address:
B Bindu Madhavi
Department of Pharmaceutics, Nalanda College of Pharmacy, Nalgonda, Andhra Pradesh-508 001
India
Login to access the Email id


DOI: 10.4103/2230-973X.76726

PMID: 23071917

Get Permissions

  Abstract 

Background: Efavirenz is the preferred nonnucleotide reverse transcriptase inhibitor for first-line antiretroviral treatment in many countries. It is orally active and is specific for human immunodeficiency virus type 1. Its effectiveness can be attributed to its long half-life, which is 52-76 h after multiple doses. The drug is having poor water solubility. The formulation of poorly soluble drug for oral delivery will be one of the biggest challenges for formulation scientists in the research field. Among the available approaches, the solid dispersion technique has often proved to be the most commonly used method in improving dissolution and bioavailability of the drugs because of its simplicity and economy in preparation and evaluation. Materials and Methods: Solid dispersions were prepared by solvent evaporation and physical mixture methods by using polyethylene glycol as the hydrophilic carrier and PEGylated product was also prepared. The prepared products were evaluated for various parameters, such as polymer interaction, saturation solubility study, and drug release studies. The drug release data were analyzed by fitting it into various kinetic models. Results: There is an improvement in the dissolution from 16% to 70% with solid dispersion technology. Higuchi model was found to be the best fit model. Conclusion: Solid dispersion is the simple, efficient, and economic method to improve the dissolution of the poorly water-soluble drugs.

Keywords: BCS class II drugs, polyethylene glycol, solvent evaporation method


How to cite this article:
Madhavi B B, Kusum B, Krishna Chatanya C H, Madhu M N, Sri Harsha V, Banji D. Dissolution enhancement of efavirenz by solid dispersion and PEGylation techniques. Int J Pharma Investig 2011;1:29-34

How to cite this URL:
Madhavi B B, Kusum B, Krishna Chatanya C H, Madhu M N, Sri Harsha V, Banji D. Dissolution enhancement of efavirenz by solid dispersion and PEGylation techniques. Int J Pharma Investig [serial online] 2011 [cited 2014 Oct 26];1:29-34. Available from: http://www.jpionline.org/text.asp?2011/1/1/29/76726


  Introduction Top


An estimated 36 million people are infected with human immunodeficiency type-1 (HIV-1) worldwide. [1] Introduction of highly active antiretroviral therapy has brought with it significant reduction in mortality and opportunistic events, even in patients with very advanced stage of HIV infection. [2] Efavirenz, a nonnucleoside reverse transcriptase inhibitor is commonly used in therapeutic protocols to treat HIV patients. [3] It is a crystalline lipophilic solid with an aqueous solubility of 9.0 μg/mL and with a low intrinsic dissolution rate (IDR) of 0.037 mg/cm 2 /min. [4] The drugs with less than 0.1 mg/cm 2 /min of IDR have dissolution as a rate-limiting step in absorption. This suggests the importance of dissolution improvement for efavirenz. Moreover, most of these new chemical entities despite their high permeability, are only absorbed in the upper small intestine. Consequently, if these drugs are not completely released in gastro intestinal tract area, they have low bioavailability. [5]

Chemical structure of efavirenz [Figure 1]
Figure 1 :Chemical structure of efavirenz

Click here to view


The US has defined a Biopharmaceutical Classification System (BCS) in which drugs are divided into 4 classes based on their solubility and permeability as shown below [Table 1]. [5]
Table 1 :Biopharmaceutical classifi cation system

Click here to view


According to BCS, drugs with low aqueous solubility and high membrane permeability, such as efavirenz, are categorized as Class II drugs. [6],[7],[8] The dissolution of various drugs can be improved by preparing the solid dispersions using suitable hydrophilic carriers. Solid dispersion technologies are particularly promising for improving the oral absorption and bioavailability of BCS Class II drugs. Solid dispersions are more efficient than these particle size reduction techniques, because the latter have a particle size reduction limit around 2-5 mm, which frequently is not enough to improve considerably the drug solubility or drug release in the small intestine and, consequently, to improve the bioavailability. [9] Drug solubilization from solid dispersion systems is mainly due to particle size reduction, increased surface area, reduction in crystallinity, and increased wettability by the surrounding hydrophilic carriers, which improve the dissolution rate. [10]

The PEGylation refers to the conjugation of drug moiety to polyethylene glycol (PEG) through covalent or noncovalent interaction and this increases the solubility of the drug. [11] The need and objective of our study is to enhance the dissolution rate of Efavirenz by using PEG. [12],[13],[14]


  Materials and Methods Top


Efavirenz was obtained as a gift sample from Dr. Reddy's Laboratories, Hyderabad, India. PEG 6000 was obtained from SD Fine Chemicals Limited, Mumbai, India. All other reagents used were of analytical grade and UV Spectrophotometer (Elico SL159, Ahmedabad, India), USP Dissolution apparatus (Electrolab TDT 08L, New Mumbai, India), and Gyratory Shaker (DC Motors, Gujarat, India) were used.

Preparation of co-ground mixtures

The physical mixtures were prepared by triturating drug and PEG 6000 in a mortar with a pestle for 30 min.

Preparation of solid dispersions

The solid dispersions were prepared by using solvent evaporation method. These were prepared with drug:carrier (PEG 6000) ratios of 1:1 and 1:2 w/w. In solvent evaporation the drug and the carrier were added to a common solvent (ethanol) and were homogenized for 5 min. The solvent was removed using rota evaporator and dried at room temperature. The samples were pulverized using a mortar and pestle and passed through sieve no. 22 of 150 μm. [15]

PEGylation

The drug-PEG conjugates in 1:1 and 1:2 w/w ratios were prepared by dissolving efavirenz and PEG 6000 separately in possible minimum volumes of acetone. The acetonic solution of the drug was poured into the acetonic solution of PEG 6000 while stirring. The reaction mixture was incubated overnight at room temperature and acetone was evaporated by using rota evaporator to yield the PEGylated compound. [11],[16]

Compatibility studies

Fourier transform infrared (FTIR) spectra were obtained using the FTIR spectrometer (Shimadzu, Japan) by the conventional KBr pellet method. The samples were ground gently with anhydrous KBr and compressed to form a pellet. The scanning range was 400-4000 cm−1 and the resolution was 4 cm−1 .

Differential scanning calorimetry studies

The samples of pure drug and products of 1:1 ratio formed by solid dispersion technique and PEGylation were studied for comparison of crystallinity with differential scanning calorimetry (DSC).

Phase solubility studies

The solubility of the drug was measured in the presence of 1%, 2%, and 3% up to 10% w/v PEG in distilled water. An excess amount of the drug was then added to approximately 10 mL of either distilled water or the carrier solutions in glass tubes. The tubes were kept under vibration for 24 h by using Gyratory Shaker (DC Motors, Gujarat, India). After reaching the equilibrium status, the saturated solutions were filtered through a 0.45-μm membrane filter, diluted with water, and then assayed spectrophotometrically. [17]

The values of apparent stability constant, K s , between each drug-carrier combination were computed from the phase solubility profiles, as described below:



The Gibbs free energy of transfer (∆G) of efavirenz from pure water to aqueous solutions of solubilizing agents was calculated using the following equation [18] :



Where S s /S w is the ratio of molar solubility of the drug in aqueous solution of PEG to that of the pure water, R the gas constant (8.3143 J/K/mol), and T the absolute temperature (K).

In vitro dissolution studies

In vitro dissolution testing employed the United States Pharmacopeia Apparatus II (Electrolab TDD-08L, New Mumbai, India) at 50 rpm with 900 mL of water with 0.1% Tween 80 at 37ºC ± 0.5ºC. A powder sample equivalent to 50 mg of the drug filled into capsules was tested. The sample of the dissolution media was removed at predetermined time intervals and was simultaneously analyzed spectrophotometrically at a λmax of 247 nm.

Kinetic analysis of dissolution data

To study the mechanism of drug release from the formulations, the release data were fitted to the following equations.

Zero order kinetics : Drug dissolution from pharmaceutical dosage forms that do not disaggregate and release the drug slowly follows.

Q 1 = Q 0 + K 0 t

Where, Q 1 is the amount of drug dissolved in time t, Q 0 the initial amount of drug in the solution, and K 0 is the zero order release constant.

First order kinetics : This model has been used to describe absorption and/or elimination of some drugs.

ln Q t = ln Q 0 K 1 t

Where, K 1 is the first order release constant, Q 0 the initial amount of drug in the solution, and Q 1 is the amount of drug dissolved in time t.

Higuchi model : This relationship can be used to describe the drug dissolution from several types of modified release pharmaceutical dosage forms.

Q = [t D C s (2C − C s )] 1/2

Where, Q is the amount of drug release in time t, C the initial drug concentration, C s the drug solubility in the matrix, and D is the diffusion constant of the drug molecule in that liquid.

Korsmeyer-Peppas : This model is generally used to analyze the release of pharmaceutical polymeric dosage from, when more than one type of release phenomena could be involved.

Q t /Q = a t n

Where, a is the constant incorporating structural and geometric characteristics of the drug dosage form, n the release exponent (indicative of the drug release mechanism), and Q t /Q is the fractional release of the drug.

The criterion for selecting the most appropriate model was based on a goodness-of-fit test. [19]


  Results and Discussion Top


Compatibility studies

From the FTIR studies shown in [Figure 2], it is very clear that there are no interactions between drug and PEG. All the peaks responsible for the active functional groups were even present in the FTIR spectra of the drug along with PEG. According to the work of Afrouz et al., 2009, [16] FTIR peak near 1650 cm−1 indicates the formation of PEG bond with the drug. In FTIR spectrum of the drug with PEG, there is a peak near 1650 cm−1 , indicating the PEGylation.
Figure 2 :Fourier transform infrared of pure drug and fourier transform infrared of drug along with PEG

Click here to view


Differential scanning calorimetry studies

DSC curves in [Figure 3] revealed that both PEG and the drug exhibited an endothermic peak with the onset temperature around 57.5ºC and 137.27ºC, respectively. Efavirenz has original peak onset and offset as 135.27ºC-139.79ºC. In PEGylated product and solid dispersion, there was broadening of peak with onset and offset between 129.7ºC-142.5ºC and 130.8ºC-144.57ºC, respectively. The heat of fusion was 41.64, 46.41, and 67.79 J/g for pure, PEGylated compound, and solid dispersion, respectively. From the thermograms of solid dispersion and PEGylated product, the reduction of peak area for drug can be observed. This indicates the amorphous nature of the drug in a molten carrier.
Figure 3 :Differential scanning calorimetry curves of pure drug, solid dispersion, and PEGylated product of drug at 1:1 ratio with PEG 6000

Click here to view


Calibration curve

Calibration curve was prepared in phosphate buffered saline with 0.1% Tween 80. The coefficient of correlation [R 2 ] value was found to be 0.9907, and because it was above 0.99, the calibration curve values are acceptable. The slope was with a value of 0.0201. The intercept of the curve was positive and its value was 0.02385. It is shown in [Table 2] and [Figure 4].
Table 2 :Calibration curve

Click here to view
Figure 4 :Standard calibration curve of pure drug

Click here to view


Phase solubility studies

From the phase solubility studies in [Table 3] and [Figure 5], it was found that with the increased concentrations of the PEG, the solubility of efavirenz had increased. This indicates that PEG can be used as a solubility-aiding agent for the drug efavirenz. The type of curve formed is A L type, which indicates a positive linear effect on the solubility of the drug with increased concentration of PEG.
Table 3 :Phase solubility data

Click here to view
Figure 5 :Phase solubility curve for efavirenz with PEG

Click here to view


The Gibbs free energy values were calculated and were given in [Table 3]. These values were negative and were decreased with increase in the concentration of PEG. The negative nature of the Gibbs free energy changes is an indicative of the spontaneity of the process. The apparent stability constant was found to be 643 M−1 . The thermodynamic Gibbs free energy values also confirm the positive effect of PEG on dissolution of the drug.

In vitro drug release studies

After observing the percentage of drug release shown in [Table 4] and [Figure 6] up to 100 min of all the formulations, the order of enhanced dissolution is as follows:
Table 4 :Cumulative % drug release data of all the formulations

Click here to view
Figure 6 :In vitro drug release

Click here to view


Pure (16%) < physical mixture 1-1:1 ratio of drug and PEG 6000 (30%) < physical mixture 2-1:2 ratio of drug and PEG 6000 (38%) < PEGylated compound 1-1:1 ratio of drug and PEG 6000 (54%) < PEGylated compound 2-1:2 ratio of drug and PEG 6000 (56%) < solid dispersion 1-1:1 ratio of drug and PEG 6000 by solvent evaporation (70%) < solid dispersion 2-1:2 ratio of drug and PEG 6000 by solvent evaporation (71%).

This indicates that a simple physical mixture is not sufficient for the reduction in the hydrophobic surface of the drug. Even in the PEGylation process, the formation of PEG chains on the surface of hydrophobic surface of the drug could not achieve the drug release as high as it is in solid dispersions. The drug release was found to be increased tremendously in solid dispersions up to 70% from 16%. In solid dispersions, there is a chance for the formation of hydrophilic matrix of PEG in which the drug gets entrapped in the amorphous state. As the hydrophilic matrix depletes, the drug in the amorphous state will be available for dissolution. This can be contributed as a reason for the highest increase in dissolution by solid dispersion technique.

When the data were fit into various kinetic models, it was found that the matrix model is the best fit model for all [Table 5]. The n value for the model is less than 0.5 in all the formulations except solid dispersions, indicating the mechanism of release as the diffusion with Fick's law. In solid dispersions, the n value is above 0.5 (near to 2.5), indicating the mechanism of release as diffusion, which follows non-Fickian laws. The formation of the hydrophilic matrix of the carrier might be the reason for the diffusion of drug from the matrix that follows the non-Fickian kinetics.
Table 5 :Kinetic model fi tting for the drug release data

Click here to view



  Conclusions Top


The present work clearly shows that the addition of PEG 6000 to drug improves its dissolution rate. The mechanism involved may be the solubilization and improved wetting of the drug in the PEG-rich microenvironment formed at the surface of drug crystals after dissolution of the polymer. The crystallinity of the drug was reduced in both solid dispersion and PEGylated compound. Formulation of solid dispersions and PEGylated compounds improved dissolution rate compared with physical mixtures. The results indicate that the dissolution rate of the water-insoluble drug efavirenz can be enhanced significantly by the simple solid dispersions using the hydrophilic carriers, such as PEG than PEGylation technology.


  Acknowledgments Top


Authors sincerely express their gratitude to the management and staff of the Department of Pharmaceutics in Nalanda College of Pharmacy for their kind co-operation in compilation of this work. We also wish to thank the Central Analytical Department, Osmania University, for providing FTIR data and Dr. Reddy's for the drug sample.

 
  References Top

1.Piot P, Bartos M, Ghys PD, Walker N, Schwartlander B. The global impact of HIV/AIDS. Nature 2001;410:968-73.  Back to cited text no. 1
    
2.Deng SC, Chen MY, Hsieh SM, Sheng WH, Hsiao CF, Hung CC, et al. Response to efavirenz plus two nucleotide reverse-transcriptase inhibitors in patients with advanced stage human immunodeficiency virus-1 infection in Taiwan. J Microbial Immunol Infect 2003;36:10-4.  Back to cited text no. 2
    
3.Barbaro G, Scozzafava A, Mastrolorenzo A, Supuran CT. Highly active antiretroviral therapy: Current state of the art, new agents and their pharmacological interactions useful for improving therapeutic outcome. Curr Pharm Des 2005 ; 11:1843-50.  Back to cited text no. 3
    
4.Parvin ZM, Mohammad BJ, Mandana A, Hadi V. Biopharmaceutical classification of drugs using intrinsic dissolution rate (IDR) and rat intestinal permeability. Eur J Pharm Bio Pharm 2009;73:102-6.  Back to cited text no. 4
    
5.Pouton CW. Formulation of poorly water-soluble drugs for oral administration: Physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci 2006;29:278-87   Back to cited text no. 5
    
6.Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 1995;12:413-20.  Back to cited text no. 6
    
7.Jessy S, Digambar J. Newer approaches to self emulsifying drug delivery system. Int J Pharm Pharm Sci 2010;2:37-42.  Back to cited text no. 7
    
8.Takano R, Sugano K, Higashinda A, Hayashi Y, Machida M, Aso Y, et al. Oral absorption of poorly water soluble drugs: Computer simulation of fraction absorbed in humans from a miniscale dissolution test. Pharm Res 2006;23:1144-56.  Back to cited text no. 8
    
9.Serajuddin, AT. Solid dispersion of poorly water-soluble drugs: Early promises, subsequent problems, and recent breakthroughs. J Pharm Sci 1999;88:1058-66.  Back to cited text no. 9
    
10.Craig DQ. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int J Pharm 2002;231:131-44.  Back to cited text no. 10
    
11.Bandela JJ, Anupama CH. Advanced Pegylation for the development of raloxifene hydrochloride, BCS class II drug. J Young Pharm 2009;1:295-300.  Back to cited text no. 11
    
12.Heike B, Bernd F, Roland B. Characterization and stability of solid dispersions based on PEG/polymer blends. Int J Pharm 2010;390:165-73.  Back to cited text no. 12
    
13.Naima Z, Chantal C, Philippe A, Siro T, Jerome D. In vitro and in vivo evaluation of carbamazepine-PEG 6000 solid dispersions. Int J Pharm 2001;225:49-62.  Back to cited text no. 13
    
14.Damian F, Blaton N, Kinget R, Van den Mooter G. Physical stability of solid dispersions of the antiviral agent UC-781 with PEG 6000, Gelucire® 44/14 and PVP K30. Int J Pharm 2002;244:87-98.  Back to cited text no. 14
    
15.Meka L, Vobalaboine V. Enhancement of solubility and dissolution rate of poorly water soluble drugs using cosolvency and solid dispersion techniques. Int J Pharm Sci Nanotech 2009;1:349-56.  Back to cited text no. 15
    
16.Afrouz Y, Farnaz E, Sima R, Fatemeh A, Rassoul D. Preparation and in vitro evaluation of a Pegylated nano-liposomal formulation containing docetaxel. Sci Pharm 2009;77:453-64.  Back to cited text no. 16
    
17.Khan KA, Rhodes CT. Effect of compaction pressure on dissolution efficiency of direct compression system. Pharm Acta Helv 1974;49:258-61.  Back to cited text no. 17
    
18.Chengsheng L, Chenguang L, Kashappa Goud HD. Enhancement of dissolution rate of valdecoxib using solid dispersions with polyethylene glycol 4000. Drug Dev Ind Pharm 2005;1:1-10.  Back to cited text no. 18
    
19.Kotadia RM, Patel VA, Patel HV. Release kinetic study of controlled-release methotrexate beads by mathematical modeling. Res J Pharm Bio Chem Sci 2010;1:19.  Back to cited text no. 19
    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5], [Figure 6]
 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4], [Table 5]


This article has been cited by
1 Nanosuspension of efavirenz for improved oral bioavailability: formulation optimization,in vitro, in situandin vivoevaluation
Greeshma V. Patel,Vaibhav B. Patel,Abhishek Pathak,Sadhana J. Rajput
Drug Development and Industrial Pharmacy. 2013; : 1
[Pubmed]
2 “Anti HIV nanoemulsion formulation: Optimization and in vitro - in vivo evaluation”
Sabna Kotta,Shahid H. Ansari,Rakesh Kumar Sharma,Javed Ali
International Journal of Pharmaceutics. 2013;
[Pubmed]
3 Efavirenz Dissolution Enhancement I: Co-Micronization
Maíra da Costa,Rafael Seiceira,Carlos Rodrigues,Cristiane Hoffmeister,Lucio Cabral,Helvécio Rocha
Pharmaceutics. 2012; 5(1): 1
[Pubmed]



 

Top
 
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
Abstract
Introduction
Materials and Me...
Results and Disc...
Conclusions
Acknowledgments
References
Article Figures
Article Tables

 Article Access Statistics
    Viewed4324    
    Printed177    
    Emailed0    
    PDF Downloaded1071    
    Comments [Add]    
    Cited by others 3    

Recommend this journal